Regulation of sucrose to starch conversion in growing potato tubers.
نویسنده
چکیده
Growing potato tubers have been used as a model system to investigate the regulation of starch synthesis. Results indicate that sucrose degradation and starch synthesis are controlled via regulatory signals in response to sucrose and oxygen availability. (i) Sucrose leads to a co-ordinated up-regulation of sucrose synthase and ADP-glucose phosphorylase at the transcriptional and post-transcriptional level. Transcriptional regulation of ADP-glucose phosphorylase leads to rapid changes in transcript levels, but relatively slow changes in protein levels. The rapid regulation of this enzyme in response to sucrose is mediated by a novel mechanism, involving redox-activation of ADPGlc pyrophosphorylase. Sucrose synthase is regulated via transcriptional regulation, but again the resulting changes in enzyme activity occur relatively slowly. More rapid changes in the flux of this enzyme follow due to rapid changes in the levels of uridine nucleotides. (ii) Internal oxygen concentrations fall to low levels in growing tubers, triggering a restriction of respiration, a decrease in the adenylate energy status, and a widespread decrease in metabolic and biosynthetic activity. These metabolic adaptations will allow oxygen consumption to be decreased and prevent the tissue from becoming anoxic. It will be discussed how these factors interact at different levels and different time-scales of control to regulate tuber metabolism in response to physiological and environmental inputs.
منابع مشابه
Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers (Solanum tuberosum).
To change the hexose-to-sucrose ratio within phloem cells, yeast-derived cytosolic invertase was expressed in transgenic potato (Solanum tuberosum cv. Desirée) plants under control of the rolC promoter. Vascular tissue specific expression of the transgene was verified by histochemical detection of invertase activity in tuber cross-sections. Vegetative growth and tuber yield of transgenic plants...
متن کاملEnhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield.
Sucrose synthase (SuSy) is a highly regulated cytosolic enzyme that catalyzes the conversion of sucrose and a nucleoside diphosphate into the corresponding nucleoside diphosphate glucose and fructose. To determine the impact of SuSy activity in starch metabolism and yield in potato (Solanum tuberosum L.) tubers we measured sugar levels and enzyme activities in tubers of SuSy-overexpressing pota...
متن کاملThe sucrose analog palatinose leads to a stimulation of sucrose degradation and starch synthesis when supplied to discs of growing potato tubers.
In the present paper we investigated the effect of the sucrose (Suc) analog palatinose on potato (Solanum tuberosum) tuber metabolism. In freshly cut discs of growing potato tubers, addition of 5 mM palatinose altered the metabolism of exogenously supplied [U-14C]Suc. There was slight inhibition of the rate of 14C-Suc uptake, a 1.5-fold increase in the rate at which 14C-Suc was subsequently met...
متن کاملChanges in sucrose synthetase activities in aging potato tuber slices.
The me-chanism by which the reversible conversion of starch ito sucrose takes place in potato tubers exposed t,o cold is as yet essentilally unknown. Early 'studies on the subjectt tried to correllate this conversion with va,riations in the activity of related enzymes (10). Those responsible for the synthesis of sucrose and sticrose-6--phosphiate (1) are undoubtedly highly relevant. In add'itio...
متن کاملStarch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply.
Transcriptional and allosteric regulation of ADP-Glc pyrophosphorylase (AGPase) plays a major role in the regulation of starch synthesis. Analysis of the response after detachment of growing potato tubers from the mother plant revealed that this concept requires extension. Starch synthesis was inhibited within 24 h of tuber detachment, even though the catalytic subunit of AGPase (AGPB) and over...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 54 382 شماره
صفحات -
تاریخ انتشار 2003